Mark scheme

Qu	esti	ion	Answer/Indicative content	Marks	Guida	ance
1			The third line should be $2-5$ $3x = 2-5$ $3x = -3$ $x = -1$	1 1	Accept any correresponse, look for answers in the working space (see appendix) [The third line] should be $2-51$. It should be -5 not -21 . It should be -5 not -21 . It should be subtracted by -5 not -21 . The error is in -5	
			Total	2		
2	а		16, 30, 34 in any order with correct working	5	 M1 for x + 5 + 3x + 1 + 2x + 8 = 80 may be implied by a subsequent correct equation M1 for simplifying their equation to ax + b = c implied by 6x + 14 = 80 M1 for the first correct step in solving 	"Correct working" requires evidence of at least M1 leading to $x = 11$ or M2 if using trials Note for all methods: $x = 11$ scores M1M1M1 if there is some supporting work but on its own scores SC1

			their $ax + b = c$ e.g. 6x = 80 - 14	
			M1 for substituting their 11 into x + 5, 3x + 1 and 2x + 8	Alternative method
				M2 for 80 – 5 – 1 – 8 oe or 66 or M1 for 5 + 1 + 8 or 14
			Alternative method using trials	M1 for <i>their</i> 66 ÷ <i>their</i> 6 implied by 11
			M2 for at least one complete correct evaluation of $x + 5 + 3x + 1 + 2x + 8$	M1 for substituting their 11 into <i>x</i> + 5, 3 <i>x</i> + 1 and 2 <i>x</i> + 8
			If 0 or 1 scored, instead award	
			SC2 for 16, 30, 34 in any order with no or insufficient working	
			If 0 scored	
			SC1 for <i>x</i> = 11 with no or insufficient working	
			Examiner's Comments	
			This question was gener with most candidates usi approach and solving the Some attempted to use to just one complete evaluate expressions with the number and the result clearly see	ng an algebraic e equation correctly. rials and we required tion of the three nber tried, then added
b	Their fully correct conclusion after M2 scored	3	M2 for $\sqrt{(their16)^2 + (their30)^2}$ correctly evaluated	eg 3 marks for
	SST. SIGNOSTI GITOT THE SOUTOU		or for (<i>their</i> 16) ² + (<i>their</i> 30) ² and (<i>their</i> 34) ²	Yes, $\sqrt{16^2 + 30^2} = 34$ Yes, $16^2 + 30^2 = 1156$ and $34^2 = 1156$

	both correctly evaluated	
		or eg after 15, 30, 34
	OR	No, $15^2 + 30^2 = 1125$ and $34^2 = 1156$
	M1 for $\sqrt{(their16)^2 + (their30)^2}$ either not evaluated or incorrectly evaluated or for $(their16)^2 + (their30)^2$ and $(their34)^2$ either not evaluated or incorrectly evaluated or for $(their16)^2 + (their30)^2$ correctly evaluated	Adapt the scheme for equivalent correct methods e.g. Pythagoras using hypotenuse and subtraction
	$4x^2 + 32x + 64 = 5x^2 + 4$ $9x^2 + 6x + 1$ [leading to -11)($4x + 8$)] and M1 for substituting 89 and $9x^2 + 6x + 1$ and	statement for angle, M1 sos with 90 and A1 for $(x + 8)^2 = x^2 + 10x + 25 + 2x + 89$ and $(3x + 1)^2 = 4x^2 - 36x - 88 = 0$ and $(x + 1)^2 = 4x^2 - 36x - 88 = 0$ and $(x + 1)^2 = 4x^2 - 36x - 88 = 0$
	least 2 dp e.g. 28.07[2 61.93 an award max. of will not show exactly that	in to find the other two id to an exact angle of to M1 for two correct each angle e.g M1 for two angles to at .] and 61.92[7] or M2 because this method

				Examiner's Comments		
				It was expected that Pythagoras' theorem would be used and clearly demonstrated that it holds for these three values, so showing that the largest angle was a right angle. It was not sufficient to just write down 'Pythagoras' theorem', we required to be shown that it holds for this triangle. The cosine rule was another good method, if a little more demanding. Using normal trigonometry is harder as it assumes the right angle and also the other two angles are irrational numbers, so showing they sum to 90 is difficult.		
		Total	8			
3	а	3(x + 5) oe final answer	1	Examiner's Comments Many candidates answer correctly. The common in + 5 × 3, x + 15 or 3x + 5 number of candidates did importance of brackets.	ncorrect answers were x with no bracket. A high	
	b	⁻ 7 with correct working	5	accept any correct method B1 for [output =] 2 × their{3(x + 5)} – 1 oe or output through inverse of B as $x + 1$ B1 dep for their {2× 3(x + 5) – 1} = 2x + 1 oe or output through inverse of A as $\frac{x+1}{3}$ – 5	"Correct working" requires evidence of at least B1B1 or B1M1 or M2 if using trials B1 implied by $2 \times 3(x + 5) - 1$ or better e.g. $6x + 30 - 1$ dep. on previous B1 Note: $3x + 15 + 2x - 1 = 2x + 1$ scores B0B0	

		or $x + 1 = their \{3(x + 5)\}$	
			M1 B1 B1 implied by $6x + 29 = 2x + 1$
		M1 for e.g. <i>their</i> $6x + 30 - 1 = 2x + 1$ or <i>their</i> $3x = x + 1 - 15$ or inverse method $\frac{x+1}{3} - 5 = x$ M1 for <i>their</i> $\{4x = -28 \text{ or } -2x = 14\}$ oe	The first M1 is for dealing with bracket(s) correctly in a linear equation and the second M1 is for correctly getting the linear equation, with <i>x</i> 's on both sides, into the form $ax = b$.
		Alternative method using trials	
		M2 for at least two complete correct evaluations of both $6x + 29$ oe(or functions) and $2x + 1$	We can only follow through an equation with x's on both sides for M1 or x's on both sides and a bracket for M2 .
		or	
		M1 at least one complete correct evaluation of both 6 <i>x</i> + 29 oe and 2 <i>x</i> + 1	
		If 0 or 1 scored	

Examiner's Comments

SC3 for answer ⁻7 with no or insufficient

working

Those with strong algebraic skills processed the information effectively, while those with weak algebraic skills could not cope with the demands of the question and often put more than one incorrect attempt down. Writing down a combined expression proved difficult, mainly due to the absence of brackets in the many attempts. The expansion of single brackets was also poorly executed with the second term in the

				bracket usually not multiplied by the factor outside. Manipulation of an equation with an 'x' term on both sides proved difficult to many. Another error was to see $6x + 30 - 1$ evaluated to $6x - 29$.	
		Total	6		
4	а	An error in the numerators identified	1	Response Mark For additional information refer to 2023 June (J56004) Mark scheme Appendix within downloadable additional mark guidance. Examiner's Comments Most candidate recognised what was wrong with the expression and were able to convey that in their answer, however a few fell a little short of an acceptable statement. Statements such as 'they should be cross multiplying' were far too vague and lacked the detail required. We needed to know what was wrong with the expression and we did accept a corrected expression.	
	b	This question was discounted and all candidates were awarded 1 mark.	1	Examiner's Comments The intention for this question was for students to note that the negative sign should be on the top of the fraction. While the expression given is not in the standard form, it does not however contain an error; it is a perfectly valid, if unusual, first step. After analysing candidate performance during marking, we decided the fairest approach	
		Total	2		
5	а	$[1^3 + 1^2 - 5] = -3$ $[2^3 + 2^2 - 5] = 7$ Sign change [so solution between $x = 1$ and $x = 2$] or -3 < 0 < 7	M1 M1 A1	Must indicate their input and output Dep. on at least M1 and different signs	Accept other values of <i>x</i> used between 1 and 2 (see table in part (b)). For full marks, the two values need to produce a sign change.

			Acceptable answers for third mark are $x = 1$ gives answer < 0 and $x = 2$ gives answer >0
		Alternative method 1 for $x^3 + x^2 = 5$ M2 for $1^3 + 1^2 = 2$ and $2^3 + 2^2 = 12$	Note: so answer lies between 1 and 2 is not sufficient on its own or answer is in the middle is insufficient
		or	
		M1 for $1^3 + 1^2 = 2$ or $2^3 + 2^2 = 12$ may be implied by 2 or 12	
		and	
		A1 for e.g. 2 < 5 < 12 dep. on at least M1 and 5 lies inbetween their two values	If within part (a) a candidate refers to their working in part (b) you must award the marks for this method
		Alternative method 2	
		SC3 for using an iterative equation that converges to a value between 1.35 and 1.45 and concluding statement such as 1 < 1.35 to 1.45 < 2	
		or SC2 for using an iterative equation that converges to a value between 1.35 and 1.45	
		Examiner's Comments	
		Most found the two value some did not comment of there is a solution (the resthat 0 lies between the two found). We allowed other calculated, as long as the if the two signs were differences.	n how this shows that eason we required was vo values they had r values to be ey were within 1 & 2 and

				did not expect an attempt at a solution, or to use an iterative formula.					
				M2 for two correct evaluations 1 < values < 2, one which gives a positive value and the other giving a negative value or M1 for one	figure s.f.	es may be	rot to	at least 2	
				correct evaluation	X	x^3+x^2-5	Х	x^3+x^2-5	
	t	between 1 < value < 2	1.1	-2.459	1.35	_ 0.71712			
		Two correct evaluations in the		Dependent on achieving	1.2	-1.832	1.36	0.63494	
range 1.35 ≤ values ≤ 1.49, one which gives a positive value	M3	at least M2	1.3	-1.113	1.37	0.55175			
b		and the other giving a negative value	A1	1 Alternative method 1 See	1.4	-0.296	1.38	- 0.46753	
		1.4			appendix for values of $x^3 + x^2$.	1.5	0.625	1.39	- 0.38228
				Alternative method 2 M1 rearranges	1.6	1.656	1.40	0.29600	
					1.7	2.803	1.41	0.20868	
				to a correct iterative formula	1.8	4.072	1.42	- 0.12031	
				(converging or diverging)	1.9	5.469	1.43	0.03089	
				M1			1.44	0.05958	
				<u>attempts</u>			1.45	0.15113	
				first iteration			1.46	0.24374	
				(either substitution			1.47	0.33742	
				seen or found to at			1.48	0.43219	
				least 2dp			1.49	0.52805	

rot)	
M1 continues iteration to reach <i>x</i> in the range 1.35 to 1.45	
A1 for 1.4	
Dep. on M2	condone missing suffixes in formula here e.g.
OR	$x_{n+1} = \sqrt{\frac{5}{x_n+1}}$ converges and leads to values
If 0 scored	1.5811388, 1.39180797, 1.44584536
SC1 for 1.4 with no worthwhile working	If they refer to their working in part (a) which is relevant then award up to full marks in part (b)

Table for $x^3 + x^2$

	ı		<u> </u>
X	x ³ +x ²	X	$\chi^3 + \chi^2$
1.1	2.541	1.35	4.28288
1.2	3.168	1.36	4.36506
1.3	3.887	1.37	4.44825
1.4	4.704	1.38	4.53247
1.5	5.625	1.39	4.61772
1.6	6.656	1.40	4.70400
1.7	7.803	1.41	4.79132
1.8	9.072	1.42	4.87969
1.9	10.469	1.43	4.96911
		1.44	5.05958
		1.45	5.15113
		1.46	5.24374
		1.47	5.33742
		1.48	5.43219

					1.49	5.52805
				For additional information (J56004) Mark scheme downloadable additional	Appendix v	vithin
				Examiner's Comments		
				Firstly, if any calculations relevant then they should indicated. Secondly, we value and the output value output value to be accurathree significant figures. expect attempts near the sides of it. The common $x^2 = x^5$ and attempt the fi	d be repeate require both ue to be cleate to ideally As this is ite solution an error was to	the input ar and the at least aration, we do to both a write x^3 +
		Total	7			
6		1.316	4	B3 for answer 1.3160 to 1.3161 OR M3 for [$r = 1 \sqrt{3}$] oe or M2 for $r^4 = 3$ or M1 for $r^6 = 3r^2$ Trials or insufficient method: B4 for answer 1.3160 or B3 for answer 1.3160 to 1.3161	eg M3 for √3 = 1.73[2] a	nd √1.73[2]
				or M2 for at least three correct trials of r^4 oe or of r^6 and $3r^2$ oe	Accept eva 2sf rot	aluations to

				or M1 for at least two correct trials of r^4 oe or of r^6 and $3r^2$ oe	Accept evaluations to 2sf rot
				Examiner's Comments Many candidates had litt this question and many was the information in the que involving the second and candidates who did man very few could solve this algebra was seen. A few candidates attemp went far enough (perhap decimal nature of their a	le idea how to approach were unable to translate estion into expressions it sixth terms. Of the age to arrive at $r^6 = 3r^2$, and some very poor otted trials, but rarely as perturbed by the
		Total	4		
7		(-2, 4) and (-4, -2) with correct working	6	M1 for $x^2 + (3x + 10)^2$ = 20 M1 for expanding their square term e.g. $9x^2 + 30x + 30x + 100$ M1 for simplifying their quadratic equation e.g. $10x^2 + 60x + 100$ = 20 or better M1 for correctly factorising their 3- term quadratic equation	'Correct working' requires evidence of at least M1M1M1 Award equivalent marks if working in terms of <i>y</i> May be in a grid May be implied by subsequent working Their quadratic must include an <i>x</i> term Simplified: 10 <i>x</i> ² + 60 <i>x</i> + 80 [= 0] or <i>x</i> ² + 6 <i>x</i> + 8 [= 0] e.g. (<i>x</i> + 2)(<i>x</i> + 4), (5 <i>x</i> + 10)(2 <i>x</i> + 8)

or for correct use of quadratic formula for *their* 3term quadratic equation

or for correct completing the square

e.g. reaching $d(x + e)^2 + f$

A1 for one correct point or two correct x-values

If **0** or **1** scored, instead award

SC2 for 2 correct points with no or insufficient working

If 0 scored

SC1 for 1 correct point or 2 correct *x*-coordinates or 2 correct *y*-coordinates with no or insufficient working

Examiner's Comments

For some candidates, this was a question that they knew how to answer and they worked their way through the required algebra carefully, often gaining full marks. On the other hand, many candidates did not attempt this question. Others attempted to find one or both pairs of coordinates by trials, but this rarely had any success.

Of those who squared y = (3x + 10) and substituted into $x^2 + y^2 = 20$, the majority went on to at least get the two correct values of x. The few who started by rearranging to $x = \frac{y-10}{3}$ before squaring and substituting for x^2 were much less successful because of the fractions they had introduced.

A few began by making basic errors such as (3x

				+ $10)^2$ = $9x^2$ + 100 , thereby of the question and gaining	
		Total	6		
8		$2(x+\frac{3}{4})^2 - \frac{169}{8}$ as final answer with correct working	5	Method 1: B3 for $2(x+\frac{3}{4})^2$ in final answer with correct working or M1 for $2x^2 - 5x + 8x - 20$ oe M1 for $2(x^2 + \frac{3}{2}x)[-20]$ oe AND M1 for $[-b=]-2(their\frac{3}{4})^2 - 20$ soi by $-\frac{169}{8}$ Method 2: B3 for $2(x+\frac{3}{4})^2$ in final answer with correct working or M1 for $2x^2 - 5x + 8x - 20$ oe	'Correct working' requires evidence of at least M1 Accept decimal and mixed number equivalents throughout eg. $2(x + 0.75)^2 - 21.125$ $2(x + \frac{3}{4})^2 - 21\frac{1}{8}$ May be in a grid

or for $2(x^2 + ax + ax +$	
a^2) – b oe	

M1 for 4ax = 3x soi by $\frac{3}{4}$

AND

M1 for [-b =]
$$-2\left(their\frac{3}{4}\right)^2 - 20$$
 soi by $-\frac{169}{8}$

Method 3:

B3 for $2(x+\frac{3}{4})^2$ in final answer with correct working

or

M1 for roots -4 and 2.5

M1 for turning point at $[x =]\frac{-4+2.5}{2}$ soi by $-\frac{3}{4}$

AND

M1 for
$$[-b =]$$

$$(2(their-\frac{3}{4})-5))((their-\frac{3}{4})+4)$$
 soi by $-\frac{169}{8}$

If no or insufficient working

SC2 for
$$2\left(x+\frac{3}{4}\right)^2-\frac{169}{8}$$

or

SC1 for
$$2(x+\frac{3}{4})^2[+k]$$

Examiner's Comments

The vast majority of candidates made a start, but only about 1/4 of them progressed successfully beyond the M1 mark for expanding (2x - 5)(x +

				4) as $2x^2 + 8x - 5x - 20$.	
				Virtually all candidates we solve the question as a formula of problem. Most appeared deal with the coefficient of is shown as an example specification.	completing the square' unfamiliar with how to of <i>x</i> ² not being 1, which
				check whether it was con led them changing their a giving access to earn the method was shown. Man still did not get the correct	didates expanded this to rect, which sometimes answer to $2(x + 0.75)^2$, as B3 mark if some by of these candidates
				A small number of candiquestion did not have to the square at all. Instead expressions and matche very successfully. Using x-coordinate of the turnir specification) was also in scheme; this was rarely successful.	be solved by completing I, they expanded both d coefficients, usually symmetry to identify the ng point (7.01c of the ncluded on the mark
		Total	5		
9		$\frac{A}{10} - 3$ or $\frac{1}{10}(A - 30)$ or $\frac{A - 30}{10}$ with correct working or other simplified equivalents	5	B4 for $\frac{Acm^2}{10} - 3$ ect with correct working OR The below assumes PQ = x . Mark similarly use of SR = x . M2 for $10x + \frac{1}{2} \times 6$ × 10 or $\frac{10(x+x+6)}{2}$ oe or for $10x$ and 30 , may be indicated on diagram	'Correct working' requires evidence of at least M2 Condone use of PQ, PQ + 6 etc instead of x and x + 6 Working may be on diagram For M2 accept area A – 30 for area 10x

A1 for $[A =] 10x + 30$ or $10(x + 3)$	For A1 accept equivalents such as $\frac{A}{5} = 2x + 6$, $2A = 20x + 60$
or	
M1 for lengths <i>x</i> and <i>x</i> + 6 oe or for area 10 <i>x</i> or area 30	For M and A marks, both lengths must be in terms of the same variable eg PQ and PQ + 6, not x and y unless $y = x + 6$ subsequently seen
AND	
M1FT for $10x = A - 30$ or $x + 3 = \frac{A}{10}$	FT $ax + b = A$ or $a(x + b) = A$ ($a \neq \pm 1$ or 0, $b \neq 0$)

If **0** or **1** scored, instead award

SC2 for $\frac{A}{10} - 3$ or $\frac{1}{10}(A - 30)$ or $\frac{A-30}{10}$ with no or insufficient working

Examiner's Comments

Good responses tended to be characterised by working that was easily followed, but in many cases, working was haphazard and often difficult to follow. For some this led to self-induced slips in their working.

A number of candidates scored 1 mark, usually for the area of the triangle. Some tried to use Pythagoras' theorem or trigonometry to find the unnecessary length QR. Many others mixed up their PQ and SR lengths. The main difficulty for those that made progress was in rearranging 'for the length PQ in terms of A'. Many got to the M2A1 answer of 10x + 30, but no further.

Overall, of those that did score marks, the trapezium method and the rectangle + triangle method were used in roughly equal numbers

			and the use of 'x' and 'x + 6' was more successful than the use of 'PQ' and 'PQ + 6'. The omission of brackets was a common problem and statements such as A = 5 × 2x + 6 or other similar variations were often seen. A small proportion of candidates left units in their answer. A very efficient solution was to define the area of the rectangle as both 10PQ and A – 30, which led to a simple solution for PQ.		
	Total	5			
10	1.5 or $1\frac{1}{2}$ or $\frac{3}{2}$	4	M1 for $2(x-5) = 2(1 - 3x)$ or $\frac{x-5}{1-3x} = 1$ M1 for $2x - 10 = 2 - 6x$ or $x - 5 = 1 - 3x$ M1 for reaching $ax = b$, FT <i>their</i> previous working provided previous working is of the form $dx + e = f + gx$ Examiner's Comments A number of candidates step method by removing fraction and writing $2(x - expanding the brackets, giving a correct solution, approach omitted essent errors in expanding the to score a method mark like terms to reach ax = f Many candidates were hwith the fraction in the edwas to incorrectly cancel a first step.$	showed a clear step by g the denominator of the $(5) = 2(1 - 3x)$ before collecting terms and Some using this tial brackets or made brackets, but were able for correctly collecting to for their equation. Owever unable to deal quation; a common error terms in the fraction as	

				Algebraic fractional expressions such as $\frac{2(x-5)}{1-3x}$ do not share common numeric or algebraic factors in the numerator and denominator and consequently cancelling is not possible. When removing the denominator from a fraction in an algebraic equation, always use a bracket initially, for example $2(x-5)=2(1-3x)$, so that all terms in the denominator are multiplied by 2. Exemplar 2 $2(x-5)=2(1-3x)$ $2x-10=2-6x$
		Total	4	
11	а	14/37 final answer	1	Ignore attempts to convert correct final answer to a decimal answer to a decimal Examiner's Comments Most candidates were able to give the next term correctly. Common errors were adding either 5 or 9 tothe denominator (from the difference of the first two or last two denominators respectively), leading toanswers of ¹⁴ / ₃₁ or ¹⁴ / ₃₅ .

					·
					For 3 marks oe e.g. $\frac{3n-1}{[1]n^2+2n+2}$.
					Condone consistent use of different variable for all marks e.g. M2 for $3x - 1$
				M2 for 3 <i>n</i> – 1 or (<i>n</i> + 1) ² + 1 oe	
	b	$\frac{3n-1}{(n+1)^2+1}$ oe final answer	3	or M1 for 3 <i>n</i> [+ <i>k</i>] or for a quadratic expression in <i>n</i> oe	Where <i>k</i> is a value, or ' <i>k</i> ' For M2 and M1 expressions do not need to be in a fraction
				Examiner's Comments	
				Many found this part of t did not reach the correct who attempted to work on numerator and the denot reasonably well and gen part marks for either one one of a similar form. Fir numerator was done bet denominator. Many cand visualise the fractional formade little progress.	expression. Candidates on the sequence for minator separately did erally scored at least ecorrect expression or ading the nth term of the ter than the didates were unable to
		Total	4		
12		Correct region indicated	5	B2 for $y-1 = \frac{1}{2}x$ broken line or B1 for $y-1 = \frac{1}{2}x$ solid line	Use overlay as a guide for accuracy must pass through or touch small circles (when extended if necessary) position is 2 small dots each way from correct position of ends of line Allow shorter accurate line provided it defines their region

				AND	See marks on diagram for next 3 marks Grid assumes y-1 = ½x is correct
				B1FT for R correct side of $y-1=\frac{1}{2}x$	Mark position of R first. If R not labelled then accept other clear indication.
				B1 for <i>R</i> correct side of $x = -3$ B1 for <i>R</i> correct side of $y = -x$	If $y-1 = \frac{1}{2}x$ not attempted then allow B1B1 max for region FT dep on sloping line drawn that is long enough to define the region chosen on grid
				Examiner's Comments	
				A small number of candidates scored full marks here. Some scored 4 marks with the only error being drawing a solid line instead of a broken line for $y-1>\frac{1}{2}x$, however the majority of candidates drew the line incorrectly. After drawing an incorrect line, follow through marks for identifying the region were available and most candidates secured a follow through mark for a correct region relative to their line. Many candidates also gained the mark for a region satisfying $y \le x$, but fewer gained the mark for a region satisfying $x \le x$. A few candidates did not clearly label or shade their region and in those cases, marks were not given.	
				? Misconcep	tion
				When drawing the line y drew a solid line rather the strict inequality > indicate not be included in the re-	han a broken line. The ed that the line should
		Total	5		
13	а	(3x + 2) (3x - 2) final answer	2		

			M1 for answer a pair of factors of the type (ax + b)(ax - b), where $a = 3$ or $b = 2$ or for correct answer seen	For 2 marks or M1, condone omission of final bracket
			Examiner's Comments Many candidates gave the A common incorrect ansile. 2). The majority of candidate expression given as squares and tried to work with other factors of 9x ² and 100 to 10	wer was $(3x - 2)(3x - 4)$ dates did not recognise the difference of two k with a pair of brackets
b	$(3x + 4)(x - 2)$ $-\frac{4}{3}$ oe and 2	M2 B1	M1 for $3x(x-2) + 4(x-2)$ or $x(3x+4) - 2(3x+4)$ or for $(3x+a)(x+b)$ where $ab = -8$ or $3b + a = -2$ Correct or FT their two factors dep on factors of the form $(3x \pm a)(x \pm b)$ Examiner's Comments Many candidates were a the quadratic expression but from there not all we correct solutions. After coanswer of $x = -4$ rather the	ble to correctly factorise into the required form, re able to extract the orrectly factorising, an

				common. Of those that didn't factorise correctly, some had incorrect signs in the brackets, such as $(3x - 4)(x - 2)$. A method mark was given where the expansion of the brackets led to two correct terms in the original equation including the term $3x^2$. Candidates were also given a follow through mark for the solutions, provided they came from factors of the form $(3x \pm a)(x \pm b)$. A small number of candidates did not follow the instruction in the question and attempted to use the quadratic formula to solve the equation. Assessment for learning When asked to factorise a quadratic expression involving 3 terms, always write the two factors as a product with brackets, e.g. $(3x + 4)(x - 2)$. Do not leave them as two separate expressions that are not linked.		
	Tota	ıl	5			
14	24x+5 3x+5	final answer	4	M3 for $\frac{30x+50-6x-45}{[3x+5]}$ soi by $\frac{24x+5}{[3x+5]}$ Or M2 for $\frac{30x+50-(6x+45)}{[3x+5]}$ or $\frac{10(3x+5)-6x-45}{[3x+5]}$ Or M1 for $10(3x+5)$ Examiner's Comments The algebraic manipulation question was beyond more able generally scories use for these candidates the subtraction sign corresponding to the subtraction of the	est candidates, but the red full marks. The usual es was in dealing with	

		Total	4		
15		2(3x-1)(5x+2)	3	B2 for $(6x - 2)(5x + 2)$ as final answer or for $(3x - 1)(10x + 4)$ as final answer or for $(3x - 1)(5x + 2)$ as final answer or M1 for two brackets which give two correct terms for $30x^2 + 2x - 4$ or for $15x^2 + x - 2$ Examiner's Comments Candidates who performed paper as a whole were of were able to find two brace expanded, produced two score 1 mark. The majorial little progress.	ten successful. Some ckets that, when of the three terms to
		Total	3		
16	а	$\frac{10}{3}$ oe	3	or M1 for 6t – 2 or 18 + 2 or 20 Examiner's Comments Most candidates made go many found the correct vanumber of candidates sto proceeded to an inaccura	alue of <i>t</i> . A small apped at 6 <i>t</i> = 20 or
	b	[x =] 4(y - 3) oe	2		

					M1 for $y = \frac{x}{4} + 3$ or better or for correct reverse flowchart with arrows reversed ← x4 ← -3 ← Examiner's Comments Many candidates scored brackets within 4(y - 3) v	full marks. The use of was very good. Many
			Total	5	other candidates scored	1 mark for $y = \frac{x}{4} + 3$.
17	а		[k =] 0	1		
	b	İ	y = 3x - 1 ruled 0.1 to 0.3 and 2.1 to 2.3	M2 A2	M1 for correct freehand or short line or for $y = 3x - k$ ruled or $y = ax - 1$ ruled but not $y = -1$ A1 for each After A0, SC1 for both values correct	For M2 must cross curve twice Accuracy ± 1mm at (0, -1) and (1, 2) Only award if M2 scored previously 0.15287, 2.1804
		ii	$1 = (3x - 1)(x - 2)$ $3x^{2} - x - 6x + 2$ $3x^{2} - 7x + 1 = 0$	M1 B2 A1	For correctly expansion of brackets B1 for 3 terms correct in expansion Dep on M1B2 with no errors or omissions	Allow recovery from missing brackets for M1 or ' = 1' For B2 accept $3x^2 - 7x + 2$ For B1 $-7x$ counts as two terms
			Total	9		

18	а		(x + 11)(x + 7) [= 0] -11 and -7	M2 B1	M1 for $(x + a)(x + b)$ [= 0] where $ab = 77$ or $a + b = 18$ or for $x(x + 11) + 7(x + 11)$ or $x(x + 7) + 11(x + 7)$ FT their factors if of the form $(x + a)(x + b)$ with a, b integers Examiner's Comments This was a well answere able to either give the co to find them. Those that usually gave the correct	d question. Most were rrect factors or attempt did give correct factors
	b	-	$(x + 9)^2 - 4$ final answer	3	B1 for (x + 9) ² B2FT for [+] 77 – (their a) ² after (x + their a) ² correctly evaluated or B1 for [+] 77 – (their a) ² shown If 0 scored, SC2 for final answer (x + 9) – 4 Examiner's Comments This was slightly less we previous part, but a signiunderstood the strategy square; executed it correanswer. Errors included (x + 9) ² + in each of these cases parts	Il answered than the ficant number of completing the ectly and gave the

		ii	(-9, -4)	2	FT their 18(b)(i) if in form (x + a) ² + b B1FT for each value Examiner's Comments Fewer were able to connect their answer to part (b) (i) to this part, but a significant minority were successful.
			Total	8	
19			-1, 0, 1, 2, 3	3	B2 for 5 correct values with one extra or for 4 correct with no extras or for $-1 \le x < 4$ or M1 for $-4 + 3 \le x$ or $x < 1 + 3$ oe For M1, condone incorrect inequality sign or equals Examiner's Comments More able candidates used a structured approach and solved the inequality algebraically and then considered values of x that satisfied the interval. Others attempted trials and often did not obtain one or more of the solutions. A significant number gave the integers that satisfied the inequality $-4 \le x < 1$.
			Total	3	
20	а	i	$[u_3 =] x + y$ $[u_4 =] y + x + y [= x + 2y]$	1	Examiner's Comments The candidates who were confident with algebra answered this part correctly. Others used numbers to show the formula works. A few gave the third term as <i>x</i> + <i>y</i> but simply wrote <i>x</i> + 2 <i>y</i> for the fourth term without showing where it came from.

				In 'Show that' question have no omissions or incomplete in the control of the	correct work shown.
	ii	3 2 with correct working	6	M2 for $[u_7 =] 7 + x + y + 7 + x + y + 7$ oe or better or M1 for $[u_5 =] x + y + 7$ oe or better and B1 for $x + 2y = 7$ oe B1FT for their $(2x + 2y + 21) = 31$ oe M1 for solving their equations e.g. subtracting equations to give $x = 3$ If 0 or 1 scored, instead award SC2 for answers $[x =] 3$ and $[y =] 2$ with no or insufficient working If 0 scored, instead award SC1 for $[x =] 3$ or $[y =] 2$ or both correct answers switched, with no or insufficient working	"Correct working" requires evidence of at least B1 B1 or M2 or M1 M1 e.g. 2x + 2y + 21 or 2x + 3y + x + 2y + 2x + 3y or 5x + 8y e.g. x + y + x + 2y or 2x + 3y e.g. multiplying one equation and correctly adding or subtracting to eliminate one variable M1 for each correct trial (value of x and a value of y) up to a maximum of M3 e.g. x = 1 y = 4 gives

				1 4 5 9 [14 23 37]
			Examiner's Comments Those candidates who pexpressions usually wenter answers. The method of systematic approach with answer, the algebraic meshorter.	roduced correct t on to find the correct trials usually required a h many trials to find the
			M1 for common ratio of $\sqrt{3}$ implied by answer of $(\sqrt{3})^k$	
b	$(\sqrt{3})^{n-1}$ or $3^{\frac{1}{2}(n-1)}$ oe	2	Examiner's Comments Most candidates could n sequence this was, some arithmetic sequence whiterms to decimals. They common ratio as $\sqrt{3}$ to hawriting down the express	ot work out what type of e treated it as an le others changed the needed to identify the ave any chance of
C	35	3	B2 for <i>b</i> = 3 OR M1 for [-1 5 13 23] - [1 4 9 16] implied by -2 1 4 7 B1 for <i>c</i> = -5 Examiner's Comments Many looked at the difference of the first top	rences which was not
			The first step should have n^2 values from those give method, to produce a part equations from the terms	en or, the longer ir of simultaneous

		Total	13		
21		Some algebraic working leading to an answer of 3 –3	5	M1 for e.g. $x^2 + (x - 6)^2 = 18$ M1 for expanding their square term e.g. $x^2 - 12x + 36$ M1 for $2x^2 - 12x + 18 = 0$ or better M1 for $[2](x - 3)^2$ or $(2x - 6)(x - 3)$ If 0 scored SC2 for correct answers with no algebraic working Examiner's Comments The main error was canon substitution, for either $x = 6$ equation. Those candidates who dishese equations correctly	didates not making the or <i>y</i> , into the quadratic id, almost always solved
		Total	5		
22	а	it should be -17 $x = \frac{y - 17}{3}$	1 1	For additional information November (J56004) Ma within downloadable add Examiner's Comments Many candidates identification	rk scheme Appendix litional mark guidance.

				not give the 'correct ans' 'x =' and some did not co	
	þ	it should be $2x$ $x = \frac{\sqrt{A}}{2} \text{ or } x = \sqrt{\frac{A}{4}}$	1 1	For additional information November (J56004) May within downloadable additional information November (J56004) May within downloadable additional information in the formation i	rk scheme Appendix litional mark guidance. Sidentify the error in the mon mistake was to 4 was necessary in the idates could not produce the produced $x = \frac{A}{4}$ while
		Total	4		
23		140	4	M1 for 11 = 3 + 20 <i>a</i> oe implied by [0].4 A1 for [<i>a</i> =] [0].4 M1 for $3 \times 20 + \frac{1}{2} \times their 0.4 \times 20^2$ Alternative method M3 for $3 \times 20 + \frac{1}{2} \times (11 - 3) \times 20$ oe OR	Condone one error in second M1 . If <i>their a</i> is clearly stated do not count as an error. Equivalent includes $\frac{1}{2}(11+3) \times 20$

					I
				M1 for 3 × 20	may be implied by 60
				M1 for \frac{1}{2} \times (11 - 3) \times 20	may be implied by 80
				M1 for their (3 × 20) + their (½ × (11 – 3) × 20)	
				Examiner's Comments	'
				variables represented. T	es did not know what the hey did not realise that e of a. Some used either alue of a. Even with an ne demonstrated that
		Total	4		
				M1 for consistent common denominator of $(2n + 3)(n^2 + 1)$ M1 for $4(n^2 + 1) - 2n(2n + 3)$ M1 for correct expansion of one bracket	Condone $\frac{4-6n}{2n^2+3n^2+2n+3}$ for 4 marks and allow numerator $2(2-3n)$ allow e.g. $\frac{4(n^2+1)}{(2n+3)(n^2+1)} - \frac{2n(2n+3)}{(2n+3)(n^2+1)}$ Condone brackets crossed out
24	а	$\frac{4-6n}{(2n+3)(n^2+1)}$ final answer	4	Examiner's Comments Generally, when a quest is written 'in its simplest as a product of brackets polynomial expression in some candidates did mu $4(n^2 + 1) - 2n(2n + 3)$, the final term of this as $+ 6n$ forgotten that they were Many candidates would correct but algebraic slip not score full marks.	ion demands a fraction form' it should be written rather than as a n. In the numerator ltiply the brackets out, but then would write the and not – 6n; they had multiplying – 2n by + 3. have all three parts
	b	$\frac{x+3}{2x+5}$ final answer	5	M2 for $(x + 3)(x - 4)$ or M1 for brackets which give 2 correct terms M2 for $(2x + 5)(x - 4)$	Condone brackets crossed out

		Total	9	Examiner's Comments Many candidates were a numerator, a few though while others gave (<i>x</i> – 6 12). However, they found harder to factorise and the alternatives to the correct – 5) or (2 <i>x</i> + 2)(<i>x</i> – 2.5).	able to factorise the a wrote $(x - 3)(x + 4)$ (x + 6) or $(x + 1)(x - 4)d the denominator muchhere were many$
25		${x: ^- 6 \le x \le 2}$ final answer and with correct working	5	B4 for $\neg 6 \le x \le 2$ with correct working and not written separately OR M2 for $(x + 6)(x - 2)$ or $\frac{-4\pm\sqrt{4^2-4\times1}x-12}{2}$ or M1 for brackets which give two correct terms or the formula with at most two errors B1 $\neg 6$ and 2 If 0 or 1 scored award instead SC2 for $\{x : \neg 6 \le x \le 2\}$ If 0 scored SC1 for $\neg 6$ $\le x \le 2$ Examiner's Comments Candidates were expect quadratic expression, or formula, to find the two requation. Many candidated add 12 to both sides and equation by factorising to the first position of the equation of t	ted to factorise the to use the quadratic roots of the companion tes, however, tried to then tried to solve their he expression $x^2 + 4x$. Solution such as $x = \sqrt{3}$ and 2 were usually bolution using set

	Total	5		
			B2 for 6 or 7 points accurately plotted or B1 for 4 or 5 points accurately plotted $\frac{1}{2}$ small square radially for curve and points, condone a wobbly curve and slight feathering or tram lines in no more than 3 sections but no ruled lines	
а	accurate curve	3	Examiner's Comments	
			The plotting was usually very accurate with the exception that the point (1, 1) was often plotted at (1, 0). Some curves were drawn very inaccurately. When marking, particular attention is given to check that the curve goes through the correctly plotted points. A few candidates used a ruler but the expectation is that curves are to be drawn by hand.	
b	x = - 1 oe	1	Examiner's Comments This was usually answered well with $y = -1$ as a very common incorrect answer. Some candidates tried to use $y = mx + c$ which made this part very tricky.	
С	-2.8 or -2.7 0.7 or 0.8	2	B1 for either If 0 or 1 scored FT their curve for 1 or 2 marks or SC1 for an answer in each of -2.8 to -2.7 and 0.7 to 0.8 Examiner's Comments Many candidates tried to calculate the answers from the equation and completely ignored the instruction to 'use the graph'. Many gave the answer to more than 1 decimal place despite the	
	b	a accurate curve b $x = -1$ oe	a accurate curve 3 b	

					Assessmen	nt for learning
					Read each question very answer(s) in the form red	•
			Total	6		
27			[a =] ⁻⁵ [b =] 2	2	B1 for one correct or M1 for any pair of original brackets correctly expanded e.g. $3x^2+ax+6x+2a$ or $1[x]\times 3[x]\times b[x] = 6[x^3]$ or $2\times a\times 3 = -30$ or better	allow seen in a table
					Examiner's Comments The working space was small to try to indicate to candidates that there was a quick method to find the answers from the coefficient of x^3 , by $1 \times 3 \times b = 6$ and by using the constant term to find the value of a. Those who tried to multiply all the brackets out usually did not find the correct answers because they made at least one error in the bracket expansions.	
			Total	2		
28			accept any correct method e.g. $(2n + 1)(2m + 1)$ e.g. $4nm + 2n + 2m + 1$ or $4nm + 2(n + m) + 1$ Statement showing that the expression is odd e.g. first three terms are even and add 1 to an even gives odd	M1 M2 A1	accept any letters condone poor use of brackets throughout if the terms are correct correctly expanding their brackets M1 for any three terms out of the four correct (middle term of three counts as two terms) e.g. 2(2nm + n + m) + 1 and a short statement "even + odd = odd" A1 dep. on two method marks If 0 scored award SC1 for 2n + 1 etc seen or	for M1 accept e.g. (2n + 1)(2m + 1) without any explanation BUT only accept e.g. (x + 1) (x + 3) if they state that x is even for M1 and M2 only accept brackets that could be the product of two odd numbers e.g. M2 for x²+ [1]x + 3x + 3 or better A1 for statement showing expression is odd e.g. x is even so x² and 4x are even so +3 makes odd

				for the correct expansion of any two brackets including e.g. $x(x + 1)$ Examiner's Comments This question was well a candidates used express represent an odd number would multiply together to candidates found it diffic expression was an odd in successful attempts usus expression by 2 and their a decimal or they factoris 2 or 4 as a common fact usually be left with + 1 or	inswered. Many sions such as $2n + 1$ to er and from there they heir two terms. Many ult to show that the final number; the most ally divided this in they would be left with sed their expression with or and they would
		Total	4	-	
29		E.g. Correct inequalities shown on diagram, correct region R identified and correct area calculation ½ × 6 × 4 [= 12]	6	B1 for line $y = 5$ B1 for line $x + y = 13$ AND B1 for correct side of $y = 2x + 1$ B1 for correct side of $y = 5$ B1 for correct side of $x + y = 13$ AND M1dep for $\frac{1}{2} \times 6 \times 4$ [= 12] oe	Condone good freehand lines, which can be dashed or solid. Lines need only be one square long for line mark but they must be fit for purpose to define their region Mark the region which is labelled, but if no labelling mark the single region which is shaded (or unshaded) or implied by area calculation of correct region R Use diagram for these three marks If extra lines, mark those bounding R. If no R, mark poorest two Dep on region R being correct Accept counting squares but check areas bounding y =2x +1

					Accept split into two triangles 4 and 8 oe
				Examiner's Comments Many candidates drew the correct line for $y = 5$, with only a few instances of $y = 4$, $y = 6$ or $x = 5$ being seen. Candidates had greater difficulty in drawing $x + y = 13$ and the line was often either	
				omitted or else interprete lines $x = 13$ and $y = 13$. Candidates who drew th	ed as meaning the two e correct lines often
				Although it should have then find the area of the base × height, some car	been straightforward to triangle through ½ × additional triangle attempted 1/2 to 1/2
				absinC, often measuring fudging the values to obtom ² . Such attempts scorunless absolutely accura	tain an answer of 12 red 0 marks for the area
				sometimes added the line creating a trapezium of a incorrect region R bound $2x + 1$ and the <i>y</i> -axis. The scored 2 marks, because their region R was the co	area 12 cm ² for an ded by $y = 5$, $y = 9$, $y =$ his is an example that e $y = 5$ was correct and brrect side of $y = 5$ but
		Total	6	not the correct side of <i>y</i>	= 2x + 1.
30	а	$(x-4)^2-7$ final answer	3	B1 for $(x - 4)^2$ AND B2FT for - 7 or M1 for 9 - $(their^-4)^2$ oe shown If 0 or 1 scored, allow SC2 for final answer $(x - 4) - 7$	No FT from $(x - 3)^2$ FT can be implied, check $9 - (their^-4)^2$
				Examiner's Comments Many candidates had litt question and scored full sometimes made with di	le problem with this marks. Errors were

				expansion of $(x - 4)^2$, lead not realise the need to see expression and simply here. Expressions involving (x) were often seen with the value of +9 following the having been taken direct. Where candidates had a most were not able to following appropriate constant and method was presented.	ubtract 16 from the ad +9 at the end. $(x^2 - 4x)^2$ and $(x - 8)^2$ latter usually having a bracket, the values try from the question. In incorrect bracket, llow through to find an
	b	$4+\sqrt{7}$ 4-√7 final answer with working from (a)	2FT	M1 for their (x - 4)² = their 7 FT from their (a) for solutions in exact form if working shown Examiner's Comments Many candidates did not to use part (a). Candidat quadratic formula scored many candidates gave the decimals even though the also often seen somewh	follow the instructions es who used the d 0 marks. In addition, neir final answers as e exact answers were
		Total	5		
31		4 and 25 nfww	4	B3 $\frac{10a^4 \times a^8}{25a^5} = \frac{2a^7}{5}$ OR B2 for $k = 4$ Or M1 any correct simplification of $\frac{a^8 \times a^8}{a^5} = a^7$	Otherwise, condone embedded answers for M marks only M1 applying correctly a law of indices May be seen within an attempt to simplify with other coefficients. Allow [m] = 10 × 5 ÷ 2

$[a^k \times] a^3 [= a^7]$ or $[a^k \times a^8 =] a^{12}$ $a^k = a^4$
$\frac{a^{k+n}}{[a^5]} [=a^7]$
$k + 8 - 5 = 7$ oe and B2 for $m = 25$ or M1 for $\frac{10}{m} = \frac{2}{5}$ oe

Examiner's Comments

This question was not answered well and exposed widespread weakness in handling algebraic expressions containing fractions. Occasionally, elegant algebra leading to a quick solution was seen. Candidates were a little more successful in finding index k than constant m.

Hardly any candidates realised they could separate out the a terms and the constants on both sides. A common misconception was to treat the numerators and denominators separately, leading to k + 8 = 7, k = -1 from the numerators alone; and the denominators were then compared giving m = 5.

Another common error was when cross-multiplying by 5 with $5(10a^k \times a^8)$ becoming $50a^k \times 5a^8$, eventually leading to m = 125.

Work was often not well presented; it was difficult to follow the process candidates were attempting and often they did not give a final answer. Sometimes there was a correct use of an index rule in the middle of a lot of wrong work. To ensure consistency in marking, the scheme marked the indices and constants separately, with 2 marks for each. A productive use of an index rule needed to be applied to the starting expression, with the remaining indices also being correct.

$$\frac{\log^k xe^p}{me^p} = \frac{2e^p}{s} \quad \frac{x+e^s-s=p}{pc+s=12}$$

				The candidate ignores the constants and focuses on applying the laws of indices to the given four indices. Ideally, they should have shown $\frac{10}{m} = \frac{2}{5}$ too, but there was no requirement to show working and so full marks are still given for the correct answers.	
		Total	4		
32		107.95 with correct working	6	B1 for $2a$ or $a + 5$ or $4a + 5$ or $25.4[0] + 5x$ seen M1 for $a + 2a + a + 5$ = 85 or better or for a trial correctly evaluated A1 for $[a =] 20$ [hours] AND M2 for $\frac{25.4[0]}{their 20} \times 85 \text{ or } 1.27 \times 85 \text{ oe}$ or $25.4[0] + 50.8[0] + \frac{25.4[0]}{their 20} \times their 25 \text{ oe}$ or $25.4[0] + 1.27 \times 40 + 1.27 \times 25 \text{ oe}$ or M1 for $\frac{25.4[0]}{their 20}$ implied by 1.27 or $\frac{25.4[0]}{their 20}$ implied by 6.35 If 0 or 1 scored, instead award SC2 for 107.95 with no or insufficient working If 0 scored, instead award SC1 for 20	"correct working" requires at least M1ANDM1 or M2 If working in pence: Allow up to 5 part • marks for consistent working Allow full marks if answer is clearly • stated as 10795 p[ence] M1 implied by sub into a + 2a + a [+ 5] with evaluation B1 max possible for using 5a instead of a + 5 e.g. M2 for 254(0) × 17 Method marks may be earned in stages May see equivalent algebraic methods. There are possibly many algebraic methods. There are possibly many algebraic methods for this question. Examiners should use the main scheme as a template, matching steps or positions in the solution as best as possible. If in doubt, contact your Team Leader. For example:

[hours] with no or insufficient working

Non-algebraic methods may earn up to full marks.

There are possibly many algebraic methods for this question. Examiners should use the main scheme as a template, matching steps or positions in the solution as best as possible.

Exemplar Responses

(tips): Amir : Beth : Charlie are 25.4 : 50.8 : 25.4 + 5x (where x is hourly rate of tips) (total tips): 25.4 + 50.8 + 25.4 + 5x = 85x. This is on the scheme at B1. There is an equation on the scheme, so M1 would be a good judgement. B1 M1

(solving): x = 1.27 (substitution into either side of the equation) eg 85×1.27 (final answer) 107.95 And then this would be the A1 This is on the scheme at M2. The answer is correct and the candidate has satisfied the "correct working" requirement and so is awarded full marks. A1 M2

Examiner's Comments

While many candidates gave the correct final answer, a few were not given full marks due to lack of working. There were several possible methods that could be used to reach the final answer. Candidates needed to show a minimum of M1M1 or M2 to enable full marks. This was typically met by showing (i) an algebraic equation such as a + 2a + a + 5 = 85 or a trial and correct evaluation of a + 2a + a + 5, together with a tips per hour or tips per 5 hours calculation implied by 1.27 or 6.35, or (ii) a more concise but clear approach using ratios. Insufficient working included just the values 20, 31.75, 107.95 with no supporting method.

Generally, solutions were not presented in a logical manner with unstructured working being 'scattered' across the page. Many solutions started in the middle of the answer space and, on running out of space, continued above the initial working.

Some candidates used a trial and improvement

method for the hours, with no totals indicated. Those using an algebraic approach often created a suitable equation, but many did not solve accurately: a + 2a + a + 5 = 85 becoming 3a = 80 was a common incorrect simplification. Another common error was the expression for Charlie, often written as '2a + 5' or '5a', the latter simplifying the problem and therefore losing access to the majority of the marks.

Some candidates could access the problem but showed little supporting work. Having spotted the correct value for a, these candidates would often continue with just a list of totals for each person and no indication of the key divisions and multiplications being made. Some candidates used the ratio of the hours (1:2:1.25) to calculate the final amount in a much shorter method, such as 25.4×4.25 .

We can assume that the candidate is using a to represent the number of hours worked by Amir. They then have algebraic expressions 2a and a + 5 for the hours worked by Beth and Charlie (B1 for either of these). The algebraic terms are summed, equated to 85 (M1) and solved to reach a = 20 (A1) and hence the hours worked by each person.

There are various approaches available from here. This candidate uses a ratio method, first simplifying 20:40:25 to 4:8:5. They then set up an equation for Amir's share of the tips: $\frac{4}{37}$ of the total tips (x) which is given as £25.40 in the question (equivalent to M2). They then solve the equation to reach the total tips of £107.95.

The candidate has shown sufficient working (M1M1 or M2) for full marks. The presentation of the work is also clear.

		Total	6	
33		3 frames with correct working	6	

Algebraic method:

B5 for [one frame =] 52 [cm] with x = 10 and $2x^2 - 12x - 80$ [= 0] or better or **M3** for $2x^2 - 12x - 80$ [= 0] or better **A1** for [x =] 10 or **M2** for (2x - 4)(x - 4) [= 96] oe or better seen or **B1** for 2x - 4 or x - 4

OR

seen

Trial and

improvement:

B5 for [one frame =] 52 [cm] with *x* = 10 and 16 by 6 [= 96] shown

or

B4 for *x* = 10 and 16 by 6 [= 96] selected or

B3 for **selects** 6 by 16 [= 96]

If 0, 1 or 2 scored, instead award **SC3** for [one frame =] 52 [cm] with no or insufficient working If 0 or 1 scored, instead award **SC2** for x = 10 with no or

"Correct working" requires B5

For **B5** and **M3A1** isw for use of x = -4

For B5 or M3 allow equivalent 3 term quadratic e.g. $2x^2 - 12x = 80$

Allow equivalents for M2 e.g. $2 \times 2 \times 2x + 2 \times 2(x-4) + 96 = 2x^2$

May be on diagram

B3 not just for seeing 6 by 16 it must be selected in some way e.g. ringed, underlined, used

Examiner's Comments

insufficient working

Candidates found this question very challenging. A few were successful in setting up a correct algebraic equation involving the product of (x - 4) and (2x - 4) equal to 96 before simplifying to a three-term quadratic equation and then solving to find x = 10. Those candidates usually went on to correctly find and justify the final answer 3. Others were able to set up a correct product of terms but then made no further progress. Many didn't correctly relate the algebraic measurements on the diagram to the area given,

				so despite doing some all not correct in relation to the transfer of candidate algebra and instead, for expaired products of 96 usus progress. There were a horesponse' to this question	ne diagram. s did not attempt to use example, tried to find ally without further igh number of 'no
		Total	6		
34		STY 6 with correct working	5	B4 for correct unsimplified answer with correct working OR M1 for ⁶⁰ / ₃₆₀ × [2×] πk oe A1 for ⁶⁰ / ₃₆₀ × 2π oe or better isw incorrect cancelling/simplification AND M1 for ⁶⁰ / ₃₆₀ × [2×] π ^{3k} / ₂ A1 for ⁶⁰ / ₃₆₀ × π3r oe or better isw incorrect cancelling/simplification If 0 or 1 scored, instead award SC2 for final answer with no or insufficient working	Condone 'x' sign oe in simplified answer if otherwise correct e.g. $\frac{5}{6} \times \pi r$ "correct working" requires M1A1M1A1 Condone R for r throughout For method marks, allow use of 3.14, 3.142, 22/7 for π Where k is numeric or algebraic but does not come from squaring Allow e.g. $k = 2$, r , d , 0.4 , $0.4x$ For A1 accept e.g. $0.333 \pi r$ Correct expression implies M1A1 For M1 must use their previous k e.g. uses $k = 10$ for first M1 then uses 15 here for $\frac{3k}{2}$ gets 2^{nd} M1 unless the expression is correctly stated as $\frac{60}{360} \times \pi 3 r$ oe which gets M1A1 Correct expression implies M1A1

				Examiner's Comments	
				Candidates found this question very challenging and there were a number of 'no response'. Some worked out the area of the sector. Those attempting an arc calculation for AB often preferred to replace <i>r</i> with a constant value. In those cases, credit was given for the arc CD if the constant used was consistent with the ratio 2: 3 for that used in AB.	
				A number of candidates gave a correct fraction $\frac{60}{360}$ for the sector but then evaluated this as 6. In this case, method marks were awarded provided the fraction was shown.	
				A small number of candi expressions in terms of AB and CD and most of correctly and gave a sim misunderstood the dema perimeter of the shaded they were given partial of	m and r for the two arcs these then added plified expression. A few and and gave the full shape ABCD for which
		Total	5		
35		$([-]12)^2 + 5^2$ $144 + 25 = 169$ or $\sqrt{144 + 25} = 13$ and $\sqrt{169} = 13$	1 1	least partial credit. As the question, candidates must correctly and make no emathematics for full credit Many used substitution coircle formula but most version of the correct of the co	andidates omitted this and it were able to earn at its is a 'show that' ast communicate arrors in their lit. of -12 and 5 into the wrote -12 ² + 5 ² instead of 144 + 25. In these cases

	Total	2		
36 a	s = 230 with 4, 3 and 10 or 100 seen	4	B2 for 4, 3 and 10 or 100 or B1 for two correct AND M1 for (3 × 10) + ½(4 × 10²) or correct substitution of unrounded or incorrectly rounded values If 0 scored then SC1 for sight of 230 Examiner's Comments Many were successful in one significant figure and substituting into the give the correct answer 230 r candidates, having correctors in substitution, so with a, or giving 3 × 10 + Many candidates chose and attempted a comple 4.06, 10.1 and 2.93. The method mark for a correctored candidates spent time do calculation that was not exemplar 1	in rounding the values to did then correctly in formula before giving in. A number of eactly rounded, made imetimes confusing $u \cdot 0.5 \times (4 \times 10)^2$. Into to round the values in a calculation involving in each candidates earned a cat substitution only. Into the round the values in a calculation involving in the rounding involving in the rounding

			8 = 30 + 2 4×100 half	rounded values the formula and then
b	$t = [\pm] \sqrt{\frac{2s}{a}}$ oe final answer	3	M2 for first two steps correctly completed e.g. $\frac{2s}{a} = t^2$ or answer $\frac{[\pm 1]\sqrt{\frac{2s}{a}}}{a}$ (no $t = 1$) or M1 for first step correctly completed e.g. $2s = at^2$ or $\frac{s}{a} = \frac{1}{2}t^2$ If 0 scored, SC1 for final answer $t = [\pm 1]\sqrt{\frac{\frac{2s}{a}}{a}}$ Examiner's Comments There were many correct candidates were given if that were correct but not simplified, e.g. $t = \sqrt{\frac{s}{a}}$. Soing ave a correct expression most successful candidates rearrangement one step merging several togethe. The common errors were	et answers given. full credit for answers fully me candidates on but omitted 't ='. The ates dealt with the at a time rather than r.

37		Total	7	steps attempted. For exint their first step of the retake the square root. Other taking the inverse, for example murather than multiplying be a square root.	her errors included not litiplying s by $\frac{1}{2}$ by 2.
	i	5	1	Very well answered. Any result of arithmetic error the formula.	•
	ii	At $x = 0$ oe and $y < 0$ or y is negative or $y = -2$ or curve is below x -axis and at $x = 1$, y is positive or $y > 0$ or $y = 5$ or curve is above the x -axis and change of sign oe [between $x = 0$ and $x = 1$] or the curve crosses the x -axis between 0 and 1 or solution/q lies between 0 and 1	1 1 dep		= 1 so the solution lies d 1 ² + (6 × 1) – 2 = 5 so from –2 to 5 plied in reasoning and a ding sign change 2 at 1 y = 5 and at 0 y is n is in between 0 and 1 applied in reasoning rect conclusion stated) 2 gative, when q = 1 graph sign change

				The graph is positive at 1 and negative at zero so the solution lies in between 0 and 1 [BOD first mark allow as 1 and 0 imply x = 1 and x = 0 and the conclusion is correct for 2nd mark) BOD2 When x = 1, y = 5 and the graph intersects the x- axis between 0 and 1 so that is where the solution lies [Does not mention x = 0 and negative and second mark dep on first but gets SC1] SC1 The graph crosses the x-axis between 0 and 1 [2nd mark dep on 1st mark and does not specifically mention x = 0 and x = 1 being negative and positive so zero but gets SC1] SC1 There is a change of sign (2nd mark dep on first mark buts gets SC1) SC1 The root lies between 0 and 1 (not adding to question asked – no reasons given for this) 0 Examiner's Comments Candidates needed to reflect on the values of y when x = 0 and when x = 1 and then explain on the sign change from negative to positive. A few candidates were able to articulate this well and give a full explanation. Some mentioned sign change without justification and were given partial credit. For the majority, there was little understanding shown. Exemplar 2 A correct response where the candidate references the values for the equation when x = 0 and x = 1 and to justify the sign change
	iii	Correct response concerning accuracy/time taken/refer to specific more efficient methods e.g. Iteration gives an estimate oe Iteration can be a lengthy process oe [to get an accurate result]	1	e.g. The quadratic formula/complete the square is quicker/more accurate/easier Trial and improvement is less efficient/takes too long You can always go to more decimal places It will not give an exact/accurate answer

					It will take many iterations There are two solutions, iteration is used to find one at a time Mark the best if more than one answer given Do not accept incorrect statement e.g. It would be quicker/easier to factorise the equation
				Examiner's Comments	
				This was answered bette (ii). Many stated that this consuming or may lead to Some stated that there was pecific methods such as or using the quadratic for exact answers. There we responses, e.g. 'it is too methods' and 'there are giving the detail needed. Exemplar 3 Licent completes the specific methods and there are giving the detail needed. An example of a correct candidate refers to specific methods and there are giving the detail needed.	er than Question 13 (a) was either too time to estimates of solutions. were more efficient s completing the square rmula that would give ere some vague hard', 'there are better two solutions', without
		Total	4	conto ano equation.	
38	а	59	4	B3 for $x = 17$ or M2 for $2(x + 28) = 5(x + 1)$ oe or better or for $45 : 18$ seen or M1 $(x + 28)$ and $(x + 1)$ seen or better	For M2 accept [P =] 45 and [R =] 18 (An answer of 76 may indicate this but check working for 45 and 18) For M1, could appear as 5 2 x+28 x+1

					or e.g. $5y = 28 + x$ and $2y = x + 1$
				Examiner's Comments Candidates found this quivery few were able to colling a correct equation using the Venn diagram. The responses included an ergonal $2(x + 28) = 5(x + 1)$ and value of x . A few other can successful in using trial and values in the ratio $5:2$ at the correct values for second candidates appeared to values for x , with little successful in using trial and x .	uestion challenging and mbine ratio 5 : 2 to form the information given in most successful quation equivalent to continued to find the andidates were and improvement with and finding 45 : 18 gave t P and set R. Many be randomly trying
	ď	$\frac{28}{45}$ oe	2FT	B2FT for 28 their(a)-14 dep on 0 < answer < 1 or B1 for numerator 28 or for denominator 45 or their (a) - 14	isw cancelling/conversion For FT - if fraction is simplified or given as a decimal check for equivalents for B2FT or B1 B1 must be part of a proper fraction $0 < P < 1$
				Examiner's Comments Those who answered pagave the correct probability other candidates were algiving a proper fraction of follow through was available incorrect answer in part of awarded.	ort (a) correctly invariably lity in this part. Many ble to score 1 mark for with the numerator 28. A able for 2 marks from an
		Total	6		
39	а	$y = \frac{30}{\sqrt{x}}$ Oe	3	M1 for $y = \frac{k}{\sqrt{x}}$ oe B1 for [k =] 30	eg condone $y = \frac{k}{\sqrt{36}}$ for M1

				Examiner's Comments AfL Most candidates were able to write a statement such as $y = \frac{k}{\sqrt{x}}$ and to find $k = 30$. It is always good practice to complete this working with the conclusion $y = \frac{30}{\sqrt{x}}$, and this was required for the full three marks.
	b	2.25 oe	3	B2 for $\sqrt{x} = \frac{3}{2}$ oe or M1 for $20 = \frac{their 30}{\sqrt{x}}$ or $\frac{20}{5} = \frac{\sqrt{36}}{\sqrt{x}}$
		Total	6	
40	а	$2^{3} - 5 \times 2 - 1 = {}^{-3}$ $3^{3} - 5 \times 3 - 1 = 11$ Sign change so solution between $x = 2$ and $x = 3$	3	M2 for $2^3 - 5 \times 2 - 1 =$ -3 and $3^3 - 5 \times 3 - 1$ $= 11$ or M1 for $2^3 - 5 \times 2 - 1$ or $3^3 - 5 \times 3 - 1$ soi by -3 or 11 Accept other values of x used between 2 and 3 (see table in part (b)). For full marks, the two values need to produce a sign change. Alternative method After $x^3 - 5x = 1$ seen M2 for $2^3 - 5 \times 2 = -2$ and $3^3 - 5 \times 3 = 12$ A1 for $-2 < 1$ and $12 >$ 1 so solution between $x = 2$ and $x = 3$ OR M1 for $2^3 - 5 \times 2$ or 3^3 -5×3 soi by -2 or 12 Alternative method SC3 for using an iterative equation that converges to a value in the range 2.25 to 2.35 and concluding statement that $2 < 2.25$ to 2.35 and concluding statement that $2 < 2.25$ to 2.35 and concluding statement that $2 < 2.25$ to $2.35 < 3$ oe or SC2 for using an iterative equation that converges to a value Accept other values of x used between 2 and 3 (see table in part (b)). For full marks, the two values need to produce a sign change. Examples just sufficient for third mark include: $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$ $-3 < 0 < 11$

			in the range 2.25 to 2.35	
			two given values, it is not two calculations; a corre either in words (e.g. "cha (e.g. "3 < 0 < 11) is also When asked to find the scorrect to a given accura	ndidates believed the be adapted to solve a at a solution lies between at enough to just perform ct concluding statement ange in sign") or symbols required for full marks.
			method, it is not sufficier that given accuracy. Mai 2.3 and $x = 2.4$, and cho answer. This scored threfull marks, they should a such as $x = 2.35$ to make	se $x = 2.3$ for their final ee marks out of four. For lso be testing a value
b	Two correct evaluations in the range 2.25 to 2.35, one which gives a positive value and the other giving a negative value 2.3	M3 and A1dep	M2 for two correct evaluations between 2 and 3, one which gives a positive value and the other giving a negative value or M1 for one correct evaluation between 2 and 3 Dependent on achieving at least M2 Alternative method M1 rearranges to a correct iterative formula (converging or diverging) M1 attempts first iteration (either	Likely values: accept rot to 2+sf x

				substitution seen or found to at least 2dp (rot) M1 continues iteration(s) to reach <i>x</i> in the range 2.25 to 2.35 A1 for 2.3 If 0 scored SC1 for answer 2.3 with no worthwhile working Examiner's Comments AfL In this part included the opening of the content	qualifier "You must show used to minimise the calculator having a ver facility. A few of x = 2.3 were seen
		Total	7		
41	а	Subst into correct formula (may be implied) and partial simplification $25 = 20t - 4t^2 \text{ seen}$ and correct completion to $4t^2 - 20t + 25 = 0$	2 1dep	B2 for $^{25=20t-\frac{1}{2}\times8\times t^2}$ oe or $25=20t+(-4)t^2$ or B1 for subst eg $^{25=20t+\frac{1}{2}(78)t^2}$ Dep on previous 2 marks	Only accept 25 = 20 <i>t</i> – 4 <i>t</i> ² if subst seen For B1 , condone ambiguity caused by missing brackets
	b	2.5 oe	3	M2 for $(2t-5)$ $(2t-5)$ or M1 for any two factors that give two correct terms when expanded or for partial factorisation $2t(2t-5)$	eg a sign error, short fraction line, short root but condone missing brackets

				- 5(2t - 5) OR M2 for $[t=]^{\frac{20 \pm \sqrt{400 - 400}}{8}}$ or better M1 for $[t=]^{\frac{-(-20) \pm \sqrt{(-20)^2 - 4 \times 4 \times 25}}{2 \times 4}}$ with at most one error	
	С	Shows <i>v</i> = 0 and concludes "stationary"	3	M1 for $[v^2 =] 20^2 +$ $2(^-8)25$ or $[v =] 20 +$ $(^-8) \times their$ (b) A1 $v = 0$ If 0 scored, instead award SC2 for $v = 0$ and other values substituted into a relevant equation as a correct check or SC1 for $v = 0$	
		Total	9		
42		$y = \frac{4}{3t - 17}$ or $y = \frac{-4}{17 - 3t}$	5	B4 for $\frac{4}{3t-17}$ or $y = \frac{2}{1.5t-8.5}$ as final answer OR M2 for $10y + 4 = 3ty - 7y$ or $\frac{5+\frac{2}{y}=1.5t-3.5}{5}$ or M1 for $\frac{2(5y+2)}{y} = 3t - 7$ $= 3t-7$ or $5y+2 = \frac{y(3t-7)}{2}$ or $10y + 4$ or $3ty - 7y$ seen or $5+\frac{2}{y} = \frac{3t-7}{2}$ or $\frac{5y+2}{y} = 1.5t-3.5$	To award full marks, solution must be correct eg $4 = 3ty - 7y - 10y$ or $\frac{2}{y} = 1.5t - 3.5 - 5$ ft for formulae of equal difficulty (eg must include a ty term oe) eg $4 = y (3t - 17)$ or $\frac{y}{2} = \frac{1}{1.5t - 8.5}$

				M1ft for correctly collecting y terms on one side and non-y terms on the other (need not be simplified at this stage) M1ft for factorising their 2 or 3 terms	
		Total	5		
43		2x + 7 as final answer	2	B1 for each part or M1 for $3x + 6$ or $-x + 1$ Examiner's Comments More candidates simplifi $2x + 5$ than obtained the 7.	ed 3(x + 2) – (x – 1) to
		Total	2		
44		5 : 6 nfww	4	B3 for 5kn: 6kn k>0 or equivalent correct unsimplified ratio seen OR M1 for two ratios with a common number of mints implied by: 10k and 10k: seen, k>0 with one correct ratio or for 2.5n: 5 seen A1 for 5kn: 10k: 6kn Examiner's Comments AfL There have been several past but this was the first element has been including was very good, with half scoring at least three manual correct that the second of the seco	Il similar questions in the t time that an algebraic led. The success rate of the candidates

				most common and productive strategy was to rewrite the two given ratios so that they had a common number of mints (usually indicated as 10). The required ratio could then be identified as $5n:6n$ which scored three marks, the correct simplified answer being $5:6$.	
		Total	4		
45		$\frac{2(x-5)}{x+2}$ or $\frac{2x-10}{x+2}$ final answer	5	M2 for $2(x-5)(x+5)$ or $(2x-10)(x+5)$ or M1 for $2(x^2-25)$ M2 for $(x+2)(x+5)$ or M1 for $x(x+2)+5(x+2)$ or $x(x+5)+2(x+5)$ or for $(x+a)(x+b)$ where $a+b=7$ or $ab=10$	For method marks condone omission of final bracket
		Total	5		
46		$z = 17 - 2x^2$ final answer	4	B3 for answer $17 - 2x^2$ OR M3 for $7 = 4\left(\frac{x^2 - 5}{2}\right) + z$ oe or $2x^2 + z = 17$ oe or $x^2 - 2\left(\frac{7 - z}{4}\right) = 5$ or better or M2 for $y = \frac{2x^2 - 10}{4}$ oe or $y = \frac{7 - z}{4}$ oe or $4y = 2x^2 - 10$ or $(2x^2 - 4y) + (4y + z) = 10 + 7$ oe or M1 for $2x^2 - 4y = 10$ or $-2y = 5 - x^2$ or $4y = 7 - z$ or better	Correct unsimplified formula in <i>x</i> and <i>z</i> M2 sets up for substitution with <i>y</i> explicit or for method for elimination by equating coefficients of <i>y</i> and correct method to eliminate <i>y</i> M1 equates coefficients of <i>y</i> or first step in rearrangement to eliminate
		Total	4		
47		$2n^{3} + 2n^{2} + 8n - 6$ or $2(n^{3} + n^{2} + 4n - 3)$ $2(n^{3} + n^{2} + 4n - 3)$	M5 A1	M3 for $2n^3 + n^2 - 6n^2 + 4n^2 + 2n - 12n - 3n - 6$ oe or better	$2n^3 - n^2 - 13n - 6$ when simplified ie $2n^2 + n - 6n - 3$ or

				or condone one error in coefficients in simplified expression $2n^3 + 2n^2 + 8n - 6$ or M2 for one correct expanded pair or M1 for 3 correct terms out of 4 in expanded pair (term in n counts as 2 terms) M1 for $3n^2 + 21n$ Accept e.g. each term is divisible by 2 or $(2n^3 + 2n^2 + 8n - 6) \div 2 = n^3 + n^2 + 4n - 3$ Alt method Alt method for 6 marks Fully correct reasoning with even and odds for n and for each term when n is even and when n is odd $(2n + 1) (n - 3) (n + 2)$ and $3n(n + 7)$ e.g. if n is even , $(2n + 1)$ is odd etc or M3 for fully correct reasoning with even and odds but only considering n is even or n is odd not both	better or $2n^2 + 4n + n + 2$ or better or $n^2 + 2n - 3n - 6$ or better Must include e.g. if n is even, $2n + 1$ is odd, n - 3 is odd, $n + 2$, is even then odd × odd × even = even and $3n$ is even and $n + 7$ is odd, even × odd = even , then even + even = even and repeat when $n = 6$ odd
		Total	6		
48	а	x < 4	3	Mark final answer M1 for $4x-12 < x \text{ or } x-3 < \frac{x}{4}$ M1 for correct step[s] to $ax < b$ FT their first step	For method marks, condone incorrect inequality sign or 'equals' sign e.g. Answer $x = 4$, $x > 4$ implies M1M1
				Examiner's Comments Solving inequalities, mar gave a value as the answinequality, or when divididid not change the direct symbol.	ny candidates either wer rather than an ing by a negative term
	b	Correct representation of their (a) on number line	2	Strict FT their (a) dep on an inequality in (a)	If e.g. 3 on answer line and x < 3 in working

[a=] 3 [b=] ⁻ 5 [c=] 1	4	B2 for <i>a</i> = 3 or M1 for second differences = 6	Condone e.g. $3n^2$ at least two terms
	<u></u>	·	
Total	4		
10 nfww	4	Some candidates tried to calculations instead of m rounding the values to 2 have made for a very str Looking for key words in question like 'estimate' s	o complete long decimal naking an estimate by 00, 4 and 5 which would aightforward calculation. the demand of the should guide candidates
Total	5		
		B1FT for <i>their</i> correct hollow or solid circle B1FT for <i>their</i> correct arrow direction	then allow FT from x < 3 If answer 4 in (a) then allow x < 4 here Both B1's must be with their value from part above If no arrow then their line must stretch to end of line
	10 nfww	10 nfww 4	hollow or solid circle B1FT for their correct arrow direction Total 5 M1 for 5 × 4 M1 for 200 or 199 used M1dep for their 200 ÷ their area, dep on first M1 10 nfww 4 Examiner's Comments Some candidates tried to calculations instead of m rounding the values to 2 have made for a very str. Looking for key words in question like 'estimate' is to round values in the calculation in the

51		[x=] -4 $[y=]$ -1 $[x=]$ 4 $[y=]$ 7 with correct algebraic working	5	accept any correct method M1 for correct substitution e.g. $(x-3)^2 + (x+3)^2$ [= 50] M1 for expanding both brackets correctly e.g. $x^2 - 3x - 3x + 9 + x^2 + 3x + 3x + 9$ [=50] M1 for simplifying their equation e.g. $2x^2 = 32$ or $2x^2 - 32$ [= 0] A1FT for $x = -4$, 4 If 0 scored SC2 for $[x=] -4[y=] -1$ $[x=] 4[y=] 7$ with no working or SC1 for both x values with no working or a correct pair of x and y values with no working	"Correct algebraic working" requires evidence of at least M1M1 implied by $2x^2 + 18$ [= 50] condoning one error or better to $ax^2 = b$ or to $ax^2 + bx + c$ [= 0] FT their quadratic equation See appendix for alternative methods
		Total	5		
		ı otal	3		
52		87 253 278 with correct working	7	B1 for $3n - 8$ B1 for $3n - 8 + 25$ or better M1 for writing a correct equation equal to 618 using <i>their</i> expressions e.g. $n + 3n - 8 + 3n - 8 + 25 = 618$ or better M1 for simplifying <i>their</i> equation e.g. $7n + 9 = 618$ A1FT for correctly solving <i>their</i> equation e.g. $n = 87$ M1 for substituting <i>their</i> 87 into both	"Correct working" requires evidence of at least B1 B1 Expressions could start from B or C. See appendix for a more complete set of trials

				expressions e.g. $3 \times 87 - 8$ and 3×87 -8 + 25 oe Trials: B1 for one complete trial with $n \ge 3$ B1 for second complete trial $n \ge 3$ If 0 or 1 scored SC3 for 87, 253, 278 with B1 only or SC2 for 87, 253, 278 with no working	
		Total	7		
53	а	≥ ≤ ≤	2	B1 for two correct or "> < <"	i.e correct but no equals
	р	$x + y \ge 6 \text{ or } y \ge 6 - x \text{ oe}$	3	B1 for the correct straight line drawn B1 for correct equation for <i>their</i> line e.g. $x + y = 6$ oe	implied by e.g. $x + y =$ 6 oe and accept a ruled or good freehand line bold line shows minimum length implied by e.g. answer of $x + y \le 6$ oe
		Total	5		
54		-3, 8	4	B1 for $(x + 3)^2$ or $-6 \div 2$ B2FT for +8, correct or ft their $(x + 3)^2$ or M1 for $(their - 3)^2 + 6 \times (their - 3) + 17$ B1FT for $(-a, b)$ FT their $\{(x + a)^2 + b\}$ to a maximum of 3 marks If no working B2 for either ordinate correct	accept any correct method(see appendix) B3 implied by $(x + 3)^2 + 8$
		Total	4		
55		x ⁸	1	I	

Total	1	
-------	---	--